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Abstract

This paper introduces a new method for learning algorithm evaluation and selection, with empirical results based on

classification. The empirical study has been conducted among 8 algorithms/classifiers with 100 different classification problems.

We evaluate the algorithms’ performance in terms of a variety of accuracy and complexity measures. Consistent with the No Free

Lunch theorem, we do not expect to identify the single algorithm that performs best on all datasets. Rather, we aim to determine

the characteristics of datasets that lend themselves to superior modelling by certain learning algorithms. Our empirical results

are used to generate rules, using the rule-based learning algorithm C5.0, to describe which types of algorithms are suited to

solving which types of classification problems. Most of the rules are generated with a high confidence rating.
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1. Introduction

Classification, one of the most popular and

significant machine learning areas, is particularly

important when a data repository contains samples

that can be used as the basis for future decision

making: for example, medical diagnosis or credit

fraud detection. Machine learning researchers have

already proposed many different types of classifica-

tion algorithms, including nearest-neighbour methods,

decision tree induction, error backpropagation, rein-

forcement learning, lazy learning, rule-based learning,
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and relatively new addition is statistical learning.

From amongst this vast and ever increasing array of

classification algorithms, it becomes important to ask

the question ‘which algorithm should be the first

choice for my present classification problem?’ Our

present research seeks to find an appropriate answer to

the above question by developing a new approach to

learning algorithm selection. Of course, it is important

to keep in mind Wolpert and Macready’s well-known

No Free Lunch (NFL) theorem [1]:

If algorithm A outperforms algorithm B on some cost

functions, then loosely speaking theremust exist exactly

as many other functions where B outperforms A.

NFL theorem.

Many studies propose new classification algo-

rithms, and attempt to produce empirical evidence of
.
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the superiority of the algorithm on a selection of

datasets. The NFL theorem suggests, however, that a

more useful strategy is to gain an understanding of the

dataset characteristics that enable different learning

algorithms to perform well, and to use this knowledge

to assist learning algorithm selection based on the

characteristics of the dataset.

Much of the comparative research on algorithms in

the machine learning community is between decision

trees and neural networks [2] and places the emphasis

on the percentage of correct classifications. The

STATLOG project [3] is one of the largest compar-

isons introduced among algorithms on a large number

of datasets with statistical analysis. An algorithm’s

performance is measured on both the percentage of

correct classifications and computational complexity.

The project finds that no algorithm is uniformly most

accurate over the dataset studied, consistent with the

basic idea of the NFL theorem. Another large

comparison recently undertaken [2] has considered

22 decision tree, 9 statistical and 2 neural network

algorithms compared on 32 datasets based on the

percentage of correct classification, training time, and

(in the case of trees) numbers of leaves. Classification

accuracy is measured by mean error rate and mean

rank of error rate. The main difference in their study is

that they considered the training time, more decision

tree models as well as statistical algorithms. They also

studied the effect of adding independent noise

attributes on the classification accuracy, and examined

the scalability of some of the more promising

algorithms as the sample size was increased. Smith

et al. [4] has introduced a methodology for choosing

an algorithm for a new problem by clustering with the

self-organising map (SOM). Other studies that are

smaller in scale include [5–8].

The accuracy or error rate measure is the primary

and the most popular way to evaluate the performance

of data mining algorithms. This type of measure

always assumes that the class distribution is unchange-

able, that is the error costs—the cost of the majority

and minority classes—have similar significance [9].

For instance, suppose we have a dataset with 1000

samples, the majority class containing 990 samples

and the minority class containing 10 samples. Now if a

classifier classifies them all as a majority class, the

accuracy will be 99%, even though the classifier

missed all minority samples due to the highly
unbalanced class distribution. Therefore, this method

is criticised as an impractical technique [9]. Another

popular way to evaluate a classifier is the cross-

validation approach. The hold-out, leave-one-out and

rotation methods are different approaches to cross-

validation. The main disadvantage of the cross-

validation method is that all the samples are not used

to construct the model when the samples are relatively

small. Moreover, the hold-out method and leave-one-

out method suffer from either large bias or variance

[10]. To overcome the limitation of error/accuracy

estimation, we propose a new classifier evaluation

method called relative weighted performance mea-

sure.

Our research compares mainly decision tree

algorithm C4.5, neural network trained with the

backpropagation (BP) algorithm, and relatively new

classifier Support Vector Machine (SVM) with some

other statistical and rule-based classifiers. We organise

our research in three main steps: first we compare the

algorithms across a number of different measures of

accuracy and computational time providing a com-

prehensive empirical evaluation of the performance of

eight classifiers on 100 classification datasets. We then

characterise the datasets using a variety of simple,

statistical and information theoretical measures.

Finally, the empirical results are combined with the

dataset characteristic measures to generate rules

describing which algorithm is best suited to which

types of problems.

This study extends the previous work of the

STATLOG project and Lim et al. in the following

ways:
� W
e include one of the rapidly popular classifier

based on statistical learning theory, SVM, in our

study.
� W
e consider 100 different datasets to measure the

classifier performance by 10-fold cross-validation

and hold-out estimation methods.
� W
e introduce a new methodology to compare the

classifier performance across a variety of measures

rather than the common focus on percentage of

correct classifications.
� W
e consider statistical significance test to compare

the classifier performance.
� F
inally, we generate rules to determine which

classifier is suitable for which types of problems.
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We also evaluate the rules by support and

confidence measures.

In this study, we have examined 100 classification

problems from the UCI Repository [11] and Knowl-

edge Discovery Central [12] (see Appendix A), and

evaluated 8 popular data mining classifiers based on a

combined performance measure of average accuracy

and computation time. The average accuracy is the

combination of the true positive rate (TPR), the true

negative rate (TNR), the percentage of correct

classification (10-fold cross-validation and hold-out)

and the weighted F-measure. We consider 10-fold

cross-validations for those datasets with the number of

samples fewer than 1000. On the other hand, for those

dataset with more than 1000 samples, we consider the

hold-out method, 70% for training and the rest for

testing, as suggested by Henery [13]. The computa-

tional complexity considers both the model train time

as well as the test set evaluation time, rather than

placing emphasis on only one of these, since some of

the algorithms need more time to classify the test set

than training the model. The machine configuration

was Pentium IV, CPU 2.66 GHz and 1 GB RAM.

Some of multi-class datasets were converted into

binary class. We considered all the algorithms from

WEKA release 3.1.8 with default parameter settings.

WEKA [14] is a Java-based machine learning tool.

The algorithms performance significance test used the

well-known statistical t-test. Dataset characteristics of

each problem are measured following Smith et al.

[4,15]. We consider simple, statistical and information

theoretic measures to identify the dataset character-

istics. Some of the statistical formulation is available

in Matlab Statistics Toolbox [16]. By using the most

co-related attributes, we generate rules to identify

which algorithm is suitable for which type of problem.

Finally, we examined the rules by the support and

confidence measure.

The rest of the paper we organise as follows.

Section 2 describes briefly the eight learning algo-

rithms. Section 3 introduces our new methodology for

classifier evaluation. The experimental results and the

final observation from the comparative studies are

presented in Section 4. Section 5 explains the rule

generation methodology, including the measures used

to characterise the datasets. The generated rules for

classifier selection are presented in Section 6, together
with their confidence and support. Finally, we draw

conclusions from our research in Section 7.
2. Learning algorithms

This section provides a short description of all the

algorithms we consider in our experimental design.

All of the algorithms belong to the category of

supervised learning methods, but we can further

categorise them into neural, rule-based and statistical

learning algorithms as described in the following

sections.

2.1. Neural-based learner

In the mid-1960s, Nilsson introduced artificial

intelligence for pattern recognition based on neural

like threshold units called neural networks (NNs).

NNs became an approach after the development of

some new algorithms, such as multilayer perceptrons

(MLP), radial basis function networks, SOM and BP.

The MLP architecture consists of three layers of

neurons, namely the input, hidden and output layers,

all connected by feed forward weights. After receiving

an input pattern, the NN passes the signal through the

network to predict the output in the output layer. The

NN then compares the predicted target value with the

actual target and estimates the error to modify the

weights. The scalar error function of the weights is

minimised by repeating the learning procedure until

the network produces the correct response to each

input [17,18,37]. WEKA uses the BP algorithm to

train the model. BP minimises the error function using

a gradient descent method. The main disadvantage of

the BP algorithm is that it is slower than some other

popular machine learning techniques, and tends to

become trapped in local minima of the error function

[19].

2.2. Rule-based learner

Rule-based learning, especially decision trees (also

called classification trees or hierarchical classifiers), is

a divide-and-conquer approach or a top-down induc-

tion method that have been studied with more interest

in the machine learning community. C4.5 is the

advanced version decision tree algorithm of ID3 [17].
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ID3 means the third series of ‘interactive dichotomi-

zer’ procedures. It can classify nominal datasets only.

For real value attributes, it is first binned into interval

to form unordered nominal values. It does not consider

any standard pruning procedure. By minimising the

ID3 limitation, Quinlan [17] introduced C4.5 algo-

rithm to solve classification problems. Like NN, C4.5

works in three main steps. First, the root node at the

top node of the tree considers all samples and passes

through the samples information in the second node

called ‘branch node’. The branch node generates rules

for a group of samples based on entropy measure. In

this stage, C4.5 constructs a very big tree by

considering all attribute values and finalises the

decision rule by pruning. It uses a heuristic approach

for pruning based on statistical significance of splits.

After fixing the best rule, the branch nodes send the

final target value in the last node called the ‘leaf node’

[17,18]. OneR is a very simple, faster and one-level

decision tree algorithm. It selects one-by-one attri-

butes from a dataset and generates a different set of

rules based on error rate from the training set. Finally,

it chooses the attribute that offers rules with minimum

error and constructs the final decision tree [20]. PART

is a partial decision tree algorithm, which is the

developed version of C4.5 and RIPPER algorithms.

The main speciality of the PART algorithm is that it

does not need to perform global optimisation like C4.5

and RIPPER to produce the appropriate rules [21].

However, decision trees are sometime more proble-

matic due to the larger size of the tree which could be

oversized and might perform badly for classification

problems [22].

2.3. Statistical learner

Recently, statistical learning theory has received

more attention from the pattern recognition community

after the introduction of SVM by Vapnik and his group

in the mid-1990s. SVM is the advanced version of the

GeneralizedPortrait algorithm,whichwas developed in

Russia in the late 1960s [23]. SVMworks in the similar

way to NN and C4.5. We can assign the three working

phases for SVM, first one is input phase or

transformation phase, then learning phase and final

one is decision phase. NN and C4.5 do not perform any

significant work in the first phase. But SVM does its

most significant job, transformation of the data by using
kernel mapping into a high dimensional feature space.

The kernel function can be polynomial, Gaussian or

many others. The high dimensional space could

theoretically be infinite, where linear discrimination

is almost possible. SVM starts to learn the data in the

high dimensional feature space, in the learning phase,

by minimising the magnitude of the weight vector

constrained by the separation (optimal hyperplane

based) into an unconstrained problem with the help of

multiplier parameter, say Lagrange multiplier. In this

stage, SVM extracts the support vectors only. Based on

the support vectors information, SVM produces the

final output function in the decision phase. Unlike NN

and C4.5, SVM does not consider all samples to

construct the final decision function. Moreover, SVM

always obtains the unique solution for the decision

function unlike iterative approaches or pruning.

Another speciality of SVM is that it minimises the

structural risk rather than empirical risk considered by

most classical learning algorithms [18,19,38]. WEKA

considers sequential minimal optimization (SMO) for

SVM and polynomial kernel with degree 1 as a default

setting [14]. Naive Bayes (NB) is a simple classifier

based on the classical statistical theory ‘Bayes

theorem’. The term ‘‘naive’’ is because it calculates

the maximum posterior probability, based on the

assumption that the attributes on the training samples

are independent and there is no hidden or latent

attributes influence in the prediction procedures [24].

Kernel density (KD) is a non-parametric linear kernel-

based density estimation algorithm. This algorithm

does not need any prior assumption, such as normal

distribution of the attributes for prediction. The

discrimination capability of this algorithm is compara-

tively faster than some other classifiers [14]. IBK is an

instance-based learning approach like the K-nearest-

neighbourmethod. The basic principle of this algorithm

is that each unseen instance is always compared with

existing ones using a distance metric; most commonly

Euclidean distance and the closest existing instance is

used to assign the class for the test sample [14].

WEKA’s default setting is K = 1. Compared to other

algorithms, it needs more time to predict the test

samples’ classes.

The statistical learning algorithm, SVM, has some

advantages over the well-established algorithms NN

and decision tree. It considers the dot product of the

feature vectors to construct the optimal hyperplane
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rather than surface, clustering or interpolation as like

NN or decision tree. So, there is less probability of

losing important information during the modelling

[25].
3. Classifier evaluation methodology

3.1. Relative weighted performance measure

We consider the two most common measures,

accuracy and computational time (on training and test

sets) for classifier evaluation in our method. First, we

measure the algorithm performance individually for

the majority and minority classes by TPR and TNR.

Secondly, we measure the performance by 10-fold

cross-validation for small datasets (less than 1000

samples). We consider the hold-out method for those

datasets having more than 1000 samples. At the last

stage, we try to minimise the effect of the imbalance

between minority and majority classes’ distributions

by using the weighted F-measure method. F-measure

considers a weighted distribution for a dataset.

We can explain the TPR and TNRmeasure by using

the contingency Table 1.

The TPR is the ratio between the numbers of

majority (positive) class samples which are correctly

classified by the algorithm and the total numbers of

majority class samples:

TPR ¼ d

n� k
� 100%

The TNR is the ratio between the numbers of minority

(negative) class samples which are correctly classified

by the algorithm and the total numbers of minority

class samples:

TNR ¼ a

k
� 100%
Table 1

Contingency table for a binary class problem

Model says

class 1 (�ve)

Model says

class 2 (+ve)

Supervisor says

class 1 (�ve)

a b a + b = k

Supervisor says

class 2 (+ve)

c d c + d = n � k

a + c

= r

b + d

= n � r

a + b + c + d

= n
Nowwe can formulate the hold-out and cross-validation

estimation following [26]. Let us consider the unla-

belled sample space is X, with corresponding labels Y.

The space of labelled samples is x = X � YandD = {x1,

x2, . . ., xn} is a dataset, which consists of n labelled

samples, where xi ¼ fvi 2X; yi 2 Yg. The inducer (D,

n) will denote the label assigned to an unlabelled sample

n by the classifier built by the inducer on dataset D, i.e.,

(D, n) = ((D))(n). The hold-out and cross-validation

estimation consider the dataset is independent and

identically distributed and equal misclassification costs

using a 0/1 loss function.

The hold-out method [26] is also called the test

sample estimation method. The most common

construction procedure is 70% samples used for the

training set and the remaining as the test set. Let us

consider a hold-out set Dh be a subset of D of size h,

and let Dt be DnDh. Now the hold-out estimation is

defined as follows:

Accho ¼
1

h

X
hvi;yii 2Dh

dðIðDt; viÞ; yiÞ;

where d(i, j) = 1, if i = j and 0 otherwise.

The cross-validation method [26] estimates the

average percentage of correct classification for all

folds. For example, in the 10-fold cross-validation

method, we first split a dataset by 10-fold. Each fold

contains 90% of the samples to construct a model and

the remaining 10% is used to evaluate the model

performance. Finally, we estimate the accuracy is the

overall number of correct classification averaged

across all 10-fold. Let us consider, Di is the test set that

includes sample xi ¼ hvi; yii and the cross-validation

accuracy estimation is defined as:

Acccv ¼
1

n

X
hvi;yii 2D

dðIðDnDðiÞ; viÞ; yiÞ;

where n is the number of folds.

We call the combined performance of the hold-out

and cross-validation accuracy estimation for all given

problems of a given classifier ‘percentage of correct

classification’ in our relative weighted performance

measure methodology.

Van Rijsbergen introduced a new measure for

classifier evaluation [27,28]. The F-measure is the

simplified form of E-measure and can be explained by

following the same notation in Table 1:
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recall ðRÞ ¼ number of true positives

number of false negativesþ number of true positives
¼ d

cþ d
;

precision ðPÞ ¼ number of true positives

number of false positivesþ number of true positives
¼ d

bþ d
:

Bajic introduced average score measure with the

combination of TPR and TNR to choose a prediction

software [34]. The E-measure [28] can be formulated

by using recall and precision as follows:

Eb ¼ 1� 1

að1=PÞ þ ð1� aÞð1=RÞ)1� ðb2 þ 1ÞPR
b2Pþ R

;

where a ¼ 1

b2 þ 1
;

where b is the balance parameter for R and P. For

example, b = 0.5 means R is half important as P. We

explore the b values ranging between 0 and infinity to

control the imbalance of the classes’ distribution.

By replacing R with TP in the above equation, we

can derive the weighted F-measure as follows:

Fb ¼ ðb2 þ 1ÞPTP

b2ðPþ TPÞ
:

Now we calculate the ranking performance for a given

algorithm based on TPR, TNR, percentage of correct

classification and F-measure. The best performing

algorithm on each of these measures is assigned the

rank of 1 and the worst is 0. Thus, the rank of the jth

algorithm on the ith dataset is calculated as:

Rij ¼ 1� eij �max ðeiÞ
min ðeiÞ �max ðeiÞ

;

whereeij, for example,mightbe thepercentageofcorrect

classification for the jth algorithmondataset i, and ei is a

vector of accuracy for dataset i. By using this equation, a

detailed comparison of algorithm performance can be

provided (see, for example, Appendix B, where the

measure used is percentage of correct classification).

The computational complexity considers the model

training time as well as the test set evaluation time. We

do not singularly place importance on either training or

test time, because some of the algorithms (for example,

IBK), needmore time to classify the test set than training

the model. The total number of best and worst ranks of

all classifiers based on TPR, TNR, percentage of correct
classification, weighted F-measure and computational

complexity is presented in Appendix C.

Next, we evaluate the performance of all the

classifiers (using the total number of best and worst

performances)among the100problems,andcall this the

formulated classifier performance (Ri). The total

number of the best and worst ranking for TPR, TNR,

percentage of correct classification, weighted F-

measure and computational complexity for all the

classifiersareevaluatedbyusingthe followingequation:

Ri ¼
1

r

si � f i
n

� �
þ 1

r
;

where r = 2 is the weight shifting parameter, si is the

total number of success (best) cases for the ith classifier,

fi is the total number of failure (worst) cases for the same

classifier, and n is the total number of datasets.

Finally, we measure the relative weighted perfor-

mance for all the classifiers with two different weights

for ranking average accuracy (ranking average

performance of TPR, TNR, percentage of correct

classification and weighted F-measure) and computa-

tional complexity using the following equation:

Z ¼ aai þ bti;

where a and b are the weight parameters for ranking

average accuracy against computational complexity.

The average accuracy and complexity are denoted by

ai and ti. We consider the range for a and b between 0

and 2. By changing the value of b, we observe the

effect of the relative importance of accuracy and

computational complexity to our perception of classi-

fier performance.
4. Experimental results

4.1. Performance analysis

The formulated classifier performance (Ri) for

TPR, TNR, percentage of correct classification,
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Table 2

Formulated ranking averaged across test set classification problems based on a variety of measures (where a rank of 1 means best performing

algorithm, and 0 means worst performing algorithm)

Classifier

IBK C4.5 PART KD NB OneR SVM NN

TPR 0.595 0.595 0.595 0.61 0.495 0.365 0.565 0.645
TNR 0.54 0.6 0.6 0.6 0.44 0.385 0.595 0.605
Percentage of correct classification 0.505 0.615 0.55 0.565 0.385 0.325 0.62 0.615

F-measure 0.565 0.625 0.625 0.575 0.48 0.365 0.56 0.62

Average accuracy 0.551 0.609 0.593 0.588 0.45 0.36 0.585 0.621

Table 3

Computational performance

Classifier Execution time

IBK 0.535

C4.5 0.535

PART 0.52

KD 0.51

NB 0.705

OneR 0.995
SVM 0.5

NN 0.015
weighted F-measure and computational performance

are summarised in Tables 2 and 3.

We observe using the TPR and TNR measures that

NN was the best performing algorithm and the second

best was KD (as shown in Table 2 by bold face). For

the percentage of the correct classification measure,

SVM was the first choice in our experiment closely

followed by NN and C4.5. C4.5/PART was the first

choice for the weighted F-measure and the second

was NN. On average accuracy measures, NN
Fig. 1. Combined performa
performed best. The OneR classifier performed worst

based on various accuracy measures. However, OneR

was the number one choice if we give importance only

on execution time rather than classification accuracy;

the second choice was NB (as shown in Table 3). The

combined performance was an average combination

of average accuracy and computational time for all the

algorithms is presented in Fig. 1. OneR performed

best, IBK, C4.5, PART, KD and SVM performed very

close to each other based on the combined perfor-

mance measure. So, we can choose any one as a

second best algorithm among them. However, NN

performed worst in our experiment based on combined

performance measure as shown in Fig. 1.

The relative weighted performance (Z) calculated

by considering b as independent but a fixed is shown

in Fig. 2. We kept constant the average accuracy

weight a = 1 but we changed the weight for

computation time b from 0.2 to 2. When ti is less

important than ai, most of the classifiers performed

similarly, but OneR was the worst. After equally
nce for the classifiers.
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Fig. 2. Relative performance for the classifiers, when a (=1) is fixed.
weighting a and b, OneR became the first choice in

our study, and NN performed worst. All the others

classifier performances were close to each other.

Therefore, we can conclude that the performance of

the classifiers depends significantly upon our percep-

tion of the relative importance of accuracy versus

computation time.

4.2. Significance test

The statistical significance t-test results are

summarised in Table 4. The test input was the average

performance of the combined performance measures

for each algorithm.
Table 4

Results for the t-test

Algorithms Hypothesis

(H)

Significance

(d)

Confidence interval

(CI)

SVM

vs. IBK

0 0.8039 �0.8417 to 1.0845

SVM

vs. C4.5

0 0.7513 �1.0675 to 0.7715

SVM

vs. PART

0 0.5776 �1.1688 to 0.6533

SVM

vs. KD

0 0.6313 �1.1356 to 0.6905

SVM

vs. NB

0 0.8067 �1.0137 to 0.7896

SVM

vs. OneR

0 0.9566 �0.8729 to 0.9224

SVM

vs. NN

0 0.8960 �0.9522 to 0.8337
The output ofH = 0 in the above table indicates that

we may not reject the null hypothesis and that there is

no statistically significant difference between the

algorithms when we consider their performance

averaged across the datasets, equally weighting

accuracy and time considerations. The higher value

of the significance level showed that there has no

significant differences among SVM, IBK, C4.5,

PART, KD, NB, OneR, and NN. The lower and upper

CI values for all algorithms showed a closely balanced

skewed position. The 95% confidence intervals of all

classifiers support acceptance of the null hypothesis.

So, based on the average combined performance

measure, we may argue statistically that there was no

significant performance difference among the classi-

fiers.

But, in some of specific cases there is a remarkable

performance difference among the algorithms. For

example, the classification percentage of accuracy for

‘new-thyroid’ dataset by C4.5, SVM and NN was

93.59, 79.95 and 96.01. When we compare the

performance of the algorithms based only on the

average across the datasets, we tend to find that all the

algorithms perform similarly on average, with some

appearing to be superior depending on the chosen

performance measurement and certain datasets, but

with no consistently superior algorithm emerging

(consistent with the NFL theorem). It is sensible

therefore to use the empirical results we have

generated to try to understand the conditions under

which certain algorithms perform well.
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Table 6

Statistical measures for characterisation of each dataset

Measure Notation

Geometric mean GM

Harmonic mean HM

Trim mean TM

Mad M

Variance V

Standard deviation std

Prctile Pr

Interquartile range IQR

Maximum and minimum eigenvalue Emax and Emin

Canonical correlation CC

Index of dispersion ID

Center of gravity CG

Kurtosis k

Skewness s

Correlation coefficient r

Z-score Z_score

Normal cumulative distribution test pncdf
Chi-square test pcst

Table 7

Information theoretical measures for characterisation of each dataset

Measure Notation

Mean entropy of variables H(X)

Entropy of classes H(C)

Mean mutual entropy

of class and variables

H̄ðC;XÞ

Equivalent number

of variables

ENV

Noise–signal ratio NSR

All these data characteristics formulation is available in

Appendix D.
5. Classifier selection methodology

5.1. Rule-based classifier selection

The trial-and-error approach is a very common

procedure to select the best classifier. It is a difficult

task to find the best classifier by following this

procedure. If we are interested in applying these

algorithms to a particular problem, then we have to

consider which algorithm is more suitable for which

problem. The suitability test can be done from rules

with the help of dataset characteristics combined with

knowledge about how the different algorithms per-

form on these datasets. Datasets can be characterised

by using certain features such as number of attributes,

their types, amount of unknown values, statistical

measures or other information measures.

5.2. Datasets characteristics measurement

Each dataset can be described by a number of

simple, statistical and information theoretical mea-

sures [4,15]. We average some statistical measures

over all the variables and take these as a global

measure of the dataset characteristics.

5.2.1. Simple measures

Some simple measures for dataset characteristics

are shown in Table 5. These are the dimensions of each

problem, the number of minority and majority samples

and the nature of the variables.
Table 5

Simple measures for characterisation of each dataset

Measure Notation

Number of attributes a

Number of samples e

Percentage of minority class cmin

Percentage of majority class cmax

Percentage of binary variables bvar
Percentage of discrete variables dvar
Percentage of continuous variables cvar
Percentage of missing values mper
5.2.2. Statistical measures

Descriptive statistics can be used to summarise the

relevant characteristics of any large dataset. The

following section lists some measures provided by the
Matlab Statistics Toolbox [16] and other sources [29–

32] (Table 6).

5.2.3. Information theoretical measures

The quality of the relationships in the data can also

be assessed using information theoretical measures.

We represent these measures formulation and expla-

nation from [4,15]. A list of information theoretical

measures are summarised in Table 7.
6. Rules for classifier selection

Now that the characteristics of each dataset can be

quantitatively measured, we can combine this infor-

mation with the empirical evaluation of classifier
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Table 8

IBK classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied IBK technique best

Yes No

Yes 1.5 0.5

No 0 2

Support: 75%; confidence: 75%.

Table 9

C4.5 classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied C4.5 technique best

Yes No

Yes 2.5 0.5

No 0 3

Support: 83.33%; confidence: 83.33%.
performance presented in Section 4. Based on the 100

classification problems, we can then train a rule-based

classifier (C5.0) to learn the relationship between

dataset characteristics and algorithm performance.

After identifying the datasets characteristics matrix

with class values, we use 90% of the samples to

construct the rule-based model for classifier selection.

The class labels in the matrix are assigned based on the

algorithm performance rank. The labels are assigned

to the classifiers IBK to NN from 1 to 8 (same order as

shown in Fig. 1). For example, if NN has performed

with the highest accuracy for the dataset A, then the

class membership for problem A is 8. We provide the

emphasis to assign the best algorithm label based on

the combined average performance. The supervised

learning algorithm C5.0 is used to generate the rules. It

has two parameters, first one is c called pruning

confidence factor and the second one m is called

minimum cases. The pruning factor has affect on error

estimation and hence the severity of pruning the

decision tree. The smaller value of c affects more

pruning of the generated tree and higher value affects

less pruning. The minimum cases m offers the degree

to which the initial tree can fit the data. Every branch

point in the tree, the value of m should be at least two.

Higher value of m can offer a form of more pre-

pruning decision tree [33]. For detail formulations, see

[17]. After suitable tuning, the best rules are selected

for the classifier. Finally, we use 10-fold cross-

validation to verify the best rule. The significance of

the best rule for classifier selection is measured, like

for association rules, by support and confidence based

on 10-fold cross-validation performance which

describes the quality of a rule. The support and

confidence can be summarised as follows:
support ¼ number of dataset that match dataset conditions and best algorithm prediction

total number of datasets
;

confidence ¼ number of dataset that match best algorithm prediction

number of dataset that match dataset conditions
:

We generated the rules for all classifiers based on the

classification performance of 100 datasets. We find the

suitable pruning confidence level (c) between 60 and

90 and the number of minimum cases (m) is 2 to 8. The

rules and evaluation performance based on 10-fold

cross-validation are presented in Tables 8–15.
6.1. Rules for IBK

The rules for IBK are generated with c = 85 and

m = 4 as follows:

IF (V<= 59.8893 AND r<= 0.51025 AND s
> 0.92751 AND ID <= �0.88889 AND NSR <=
22.1654) OR (Pcst > 0.75051 AND ID >
�0.066412) THEN we should choose IBK
classifier.

6.2. Rules for C4.5

The rules for C4.5 are generated with c = 80 and

m = 2 as follows:

IF (IQR <= 10.2273 AND Pr > 12.521) OR
(M <= 0.72494) THEN we should choose
C4.5 classifier.
6.3. Rules for PART

The rules for PART are generated with c = 65 and

m = 2 as follows:
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Table 10

PART classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied PART technique best

Yes No

Yes 1.6 0.4

No 0 2

Support: 80%; confidence: 80%.

Table 11

KD classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied KD technique best

Yes No

Yes 1.5 0.5

No 0 2

Support: 75%; confidence: 75%.
IF (GM> 0.1257 AND Z_score<= 35.7787
AND r <= 0.28951 AND s <= 0.92751)THEN
we should choose PART classifier.

6.4. Rules for KD

The rules for KD are generated with c = 75 and

m = 4 as follows:

IF (NSR <= �73.9496) OR (CC <= 0.229
AND r > 0.1805) OR (NSR > 1362.221) THEN
we should choose KD classifier.
Table 12

NB classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied NB technique best

Yes No

Yes 1.8 0.2

No 0 2

Support: 90%; confidence: 90%.

Table 13

OneR classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied OneR technique best

Yes No

Yes 1.7 0.3

No 0 2

Support: 85%; confidence: 85%.
6.5. Rules for NB

The rules for NB are generated with c = 85 and

m = 4 as follows:

IF CG> 0.2292 THEN we should choose NB
classifier.

6.6. Rules for OneR

The rules for OneR are generated with c = 70 and

m = 2 as follows:

IF (e <= 1728 AND k > 19.8879) THEN we
should choose OneR classifier.

6.7. Rules for SVM

The rules for SVM are generated with c = 70 and

m = 2 as follows:

IF Pr <= 364.6066 THEN we should
choose SVM classifier.

6.8. Rules for NN

The rules for NN are generated with c = 80 and

m = 2 as follows:

IF std <= 9970.047 THEN we should
choose NN classifier.

We found the confidence levels of all the generated

rules were more than 75%. The results have been tested

using 10-fold cross-validation. The rules for SVM
Table 15

NN classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied NN technique best

Yes No

Yes 2.7 0.3

No 0 3

Support: 90%; confidence: 90%.

Table 14

SVM classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied SVM technique best

Yes No

Yes 2.8 0.2

No 0 3

Support: 93.33%; confidence: 93.33%.
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selection showedhigher confidence performance.These

rules might be useful to determine which technique is

most appropriate for a new classification task.

7. Conclusions

The relative weighted performance measures

showed that there was no single classifier to solve

all 100 classification problems with best performance

over the experiments. The majority of classifiers

showed similar efficiency based on the empirical

results. Researchers have tended to focus on measur-

ing algorithm performance based on the percentage of

correct classification measure. The classifiers C4.5,

NN and SVM were all very competitive as the best

choices in our present study based on this measure.

But the statistical t-test showed there were no

significance differences among the classifiers when

considering a range of accuracy measures and

computational complexity. The most recent classifier,

SVM, received the highest number of best rankings for

all accuracy measures except TPR. But it did not show

any best rank for computational time for any dataset.

We may argue that, as suggested by the NFL theorem,

there is no unique classifier that is likely to perform

best for all problems. Therefore, we may be guided to
Appendix A. Basic properties of the 100 datasets

Dataset name Majority

instances

abalone 2854

adult + stretch 12

adult-stretch 12

agaricus-lepiota 4208

ann1 3679

ann2 3355

att 454

Australian 383

bcw 458

bcw_noise 444

bio 121

bld 200

bld_noise 200

bos 598

bos_noise 339

breast-cancer-

wisconsin

458

bupa 200

c 2500
choose the most suitable algorithm for a particular

problem by the proposed rule-based method.

In this research, we have proposed a rule-based

classifier selection approach, based on the prior

knowledge on problem characteristics and the

empirical results generated on 100 datasets with 8

classifier algorithms. The main aim of this research is

to assist in the selection of an appropriate classifica-

tion algorithm without the need for trial-and-error

testing of the vast array of available algorithms. The

decision tree induction algorithm C5.0 performed well

to generate the rules for algorithm selection. The

confidence levels of all the rules were over 83% for

C4.5, NN and SVM, which had sample sizes greater

than 25 datasets. The other rules’ confidence levels

were still more than 75% despite their limited sample

size. We suggest considering more classification

problems to extract better rules for IBM, PART,

KD, NB and OneR classifiers. Our aim has been to

determine the rules governing when certain algorithm

(using the default parameter settings in WEKA only)

should be recommended. Naturally, this research

could be extended to consider fine-tuning of each

algorithm and optimal feature selection to improve the

performance of individual algorithm. This is beyond

the scope of the present study however.
Minority

instances

Number of

attributes

1323 8

8 4

8 4

3916 22

93 21

73 21

446 9

307 14

241 9

239 18

68 5

145 6

145 15

312 13

167 25

241 9

145 6

2500 15
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car 1594 134 6

cmc 1140 333 9

cmc_noise 1140 333 15

crx 273 217 15

darp 1000 500 41

dbha 1400 700 41

dcpga 3002 1000 41

dcmpa 4202 1400 41

dero 1000 27 41

depov 1400 27 41

demoh 1000 563 41

dfgh 3002 500 41

dguv 4202 700 41

dmkot 500 27 41

dna 1051 949 60

DNA-n 2419 767 60

eaot 700 27 41

ebrop 563 500 41

ecot 700 563 41

edrop 3002 27 41

efrgo 4202 27 41

erovs 4202 563 41

emro 563 27 41

enprq 563 27 41

echocardiogram 88 43 7

flare 1171 218 10

german 700 300 24

hayes-roth 81 51 5

hco 209 122 19

h-d 164 139 13

hea 150 120 13

hea_noise 150 120 20

heartdiseas_Hungarian 279 15 13

hep 111 29 19

hepatitis 85 70 19

horse-23 232 136 22

horse-colic 244 124 27

hv84 267 168 16

hyp 2711 136 15

hypothyroid 3012 151 25

kr-vs-kp 1669 1527 36

letter-a 6404 263 16

monk1 278 278 6

monk2 395 206 6

monk3 288 266 6

mushroom 4208 3916 22

musk2 5581 1017 166

nettalk_stress 2910 2528 7

new-thyroid 150 65 5

page-blocks 5056 417 10

pendigits-8 3162 336 16

pid 355 177 7

pima 500 268 8

Appendix A. (Continued)

Dataset name Majority

instances

Minority

instances

Number of

attributes
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post-operative 66 24 8

primary-tumor 224 115 17

promoter 53 53 57

sick 2870 293 25

sick-euthyroid 2870 293 25

smo 1290 565 8

smo_noise 1290 565 15

sonar 111 97 60

splice-EI 2415 762 60

t_series 35 27 2

tae 101 50 5

tae_noise 102 49 10

thy 4116 321 21

thy_noise 3488 284 35

tic-tac-toe 626 332 9

titanic 1490 711 3

tmris 51 49 3

ttt 626 332 9

vehicle 346 312 18

votes 267 168 16

wav 2400 1200 21

waveform 2000 1000 40

waveform_noise 3304 1696 21

wav_noise 3345 1655 40

wdbc 357 212 30

wine 107 71 13

wpbc 152 47 33

xaa 54 40 18

xab 51 43 18

Appendix A. (Continued)

Dataset name Majority

instances

Minority

instances

Number of

attributes

Appendix B. Ranked algorithm performance (based on percentage of correct classifications) for the eight

algorithms on each dataset

Dataset name IBK C4.5 PART KD NB OneR SVM NN

abalone 0.5113 0.9315 0.8968 0.6961 0.0000 0.5553 0.8349 1.0000

adult + stretch 0.8133 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000

adult-stretch 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000

agaricus-lepiota 1.0000 1.0000 1.0000 1.0000 0.0000 0.6457 1.0000 1.0000

ann1 0.1680 1.0000 0.9920 0.3280 0.2400 0.0000 0.0960 0.4000

ann2 0.3070 1.0000 0.8509 0.4474 0.2018 0.0000 0.1667 0.3333

att 0.2818 0.6077 0.3278 0.4788 0.7772 0.0000 0.9982 1.0000

Australian 0.3235 0.8442 0.8335 0.3377 0.0000 1.0000 0.9941 0.6423

bcw 0.6826 0.5349 0.5928 0.7066 0.8483 0.0000 1.0000 0.7066

bcw_noise 0.8609 0.5665 0.6176 0.5399 0.9100 0.0000 1.0000 0.9366

bio 0.3239 0.6007 0.5439 0.4366 1.0000 0.0000 0.8172 0.8039

bld 0.7911 0.7727 0.6698 0.6717 0.0000 0.3873 0.4813 1.0000

bld_noise 0.0252 1.0000 0.8957 0.0351 0.1987 0.0000 0.5549 0.9083

bos 1.0000 0.7440 0.6244 0.9882 0.0000 0.3181 0.1004 0.6614

bos_noise 0.0000 0.8513 0.6356 0.0964 0.1078 0.8709 0.9412 1.0000

breast-cancer-wisconsin 0.7928 0.5513 0.4708 0.7062 0.8551 0.0000 1.0000 0.8008
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bupa 0.6133 0.7910 0.7294 0.6894 0.0000 0.1217 0.2010 1.0000

c 0.8994 0.7384 0.9780 0.9141 0.7684 0.0000 0.7734 1.0000

car 0.3868 0.7113 0.8530 0.3894 0.4318 0.0000 0.7616 1.0000

cmc 0.0086 0.8333 0.6593 0.0000 0.2346 0.9815 1.0000 0.6963

cmc_noise 0.0000 1.0000 0.6032 0.0839 0.3116 0.9867 1.0000 0.9814

crx 0.6151 0.9446 0.8166 0.6514 0.0000 1.0000 1.0000 0.7697

darp 1.0000 0.8711 0.9072 0.8969 0.0000 0.4485 0.5412 0.8711

dbha 1.0000 0.8719 0.9677 0.9924 0.0000 0.8491 0.9118 0.9070

dcpga 0.9775 0.8707 0.9297 1.0000 0.0000 0.9143 0.9361 0.9691

dcmpa 1.0000 0.2667 0.5667 1.0000 0.4667 0.0000 1.0000 1.0000

dero 0.9444 0.6852 0.6111 0.9815 0.0000 0.6852 0.8889 1.0000

depov 1.0000 0.9574 1.0000 1.0000 0.0000 0.8511 1.0000 0.9574

demoh 1.0000 0.4583 0.4583 0.9250 0.4917 0.0000 0.4583 0.8417

dfgh 0.9200 0.8400 0.8400 0.9200 0.4400 0.0000 1.0000 1.0000

dguv 0.9934 0.9883 0.9914 1.0000 0.0000 0.9654 0.9771 0.9873

dmkot 1.0000 0.8555 0.9609 1.0000 0.4023 0.0000 0.9688 0.9883

dna 0.9853 0.9529 0.9912 1.0000 0.9294 0.0000 0.9912 0.9912

DNA-n 0.7083 0.6528 0.6528 1.0000 0.0000 0.8889 0.8194 0.6528

eaot 1.0000 0.0000 0.0395 1.0000 0.6184 0.2895 0.8026 1.0000

ebrop 0.9193 0.8327 0.8701 1.0000 0.0000 0.6654 0.9134 0.9567

ecot 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000

edrop 0.9867 0.8267 0.8867 1.0000 0.0000 0.7933 0.9467 0.9600

efrgo 0.8000 0.6500 0.5000 1.0000 0.4000 0.0000 0.6000 0.7500

erovs 0.7561 0.6341 1.0000 0.9756 0.0000 0.2927 0.9756 0.9756

emro 0.0000 1.0000 0.9411 0.3611 0.6320 0.5142 0.4223 0.5107

enprq 0.0464 0.9642 0.9272 0.0000 0.7748 0.1010 0.8187 1.0000

echocardiogram 0.0000 0.5494 0.3637 0.4718 1.0000 0.3067 0.9882 0.5793

flare 0.0000 1.0000 0.6540 0.3030 0.1641 0.9874 0.9444 0.3939

german 0.0000 0.5649 0.2830 0.3872 0.8606 0.2936 1.0000 0.4021

hayes-roth 0.6338 0.9474 1.0000 0.5478 0.2619 0.0000 0.1620 0.7146

hco 0.5855 1.0000 0.6703 0.3001 0.2611 0.6958 0.6676 0.0000

h-d 0.3816 0.6068 0.6032 0.4012 1.0000 0.0000 0.9833 0.6821

hea 0.3264 0.5309 0.4699 0.3063 1.0000 0.0000 0.9679 0.3857

hea_noise 0.3628 0.3209 0.4652 0.4488 1.0000 0.0000 0.8504 0.5707

heartdiseas_Hungarian 0.0000 0.7866 0.8534 0.4976 1.0000 0.8701 0.9380 0.8497

hep 0.3333 0.0000 0.3743 0.2935 0.7725 0.4721 1.0000 0.3333

hepatitis 0.3091 0.0000 0.4942 0.1504 0.8298 0.3008 1.0000 0.1950

horse-23 0.4052 1.0000 0.8529 0.0000 0.0049 0.6356 0.4984 0.1127

horse-colic 0.0000 0.5297 0.5427 0.6611 0.5065 1.0000 0.5909 0.6060

hv84 0.4184 0.8793 1.0000 0.4099 0.0000 0.9456 0.9541 0.8673

hyp 0.0000 1.0000 0.8197 0.1502 0.3991 0.2403 0.0858 0.3605

hypothyroid 0.0000 1.0000 0.8866 0.0773 0.2835 0.2165 0.0412 0.2474

kr-vs-kp 0.8577 1.0000 0.9911 0.8928 0.6405 0.0000 0.8868 0.9962

letter-a 1.0000 0.8323 0.8230 0.9814 0.5932 0.0000 0.7609 0.9193

monk1 0.6450 0.8871 0.8455 0.7750 0.0000 0.1886 0.0004 1.0000

monk2 0.8183 0.8915 1.0000 0.8277 0.0000 0.0060 0.0060 0.5438

monk3 0.1060 1.0000 0.9963 0.1551 0.6218 0.0000 0.0100 0.9098

mushroom 0.9989 1.0000 0.9968 1.0000 0.0000 0.8236 0.5736 0.7760

musk2 0.7177 0.7735 0.8122 0.5660 0.0000 0.3272 0.6633 1.0000

nettalk_stress 1.0000 0.4501 0.5894 0.9927 0.5052 0.0000 0.8857 0.6840

new-thyroid 1.0000 0.8187 0.7851 0.8782 0.7803 0.7233 0.0000 0.9640

page-blocks 0.7851 1.0000 0.9731 0.7672 0.2597 0.0000 0.3224 0.7940

pendigits-8 1.0000 0.9433 0.9515 0.9943 0.0000 0.4842 0.8493 0.9931

Appendix B. (Continued)

Dataset name IBK C4.5 PART KD NB OneR SVM NN
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pid 0.0000 0.7326 0.6221 0.1950 0.8635 0.5803 1.0000 0.6927

pima 0.0000 0.4853 0.4791 0.1283 0.7929 0.1917 1.0000 0.6940

post-operative 0.1077 1.0000 0.2745 0.0000 0.7352 0.8826 0.8826 0.0388

primary-tumor 0.3990 0.5859 0.8258 0.4545 0.5202 0.0202 1.0000 0.0000

promoter 0.5175 0.3818 0.6721 0.5921 0.9600 0.0000 1.0000 0.9760

sick 0.5705 1.0000 0.9899 0.6594 0.0000 0.5940 0.1913 0.7131

sick-euthyroid 0.8488 1.0000 0.9835 0.8631 0.0000 0.9045 0.7904 0.9110

smo 0.0000 0.8804 0.8016 0.0452 0.9956 0.9159 1.0000 0.9159

smo_noise 0.0492 0.3956 0.7147 0.0000 0.9815 0.7147 1.0000 0.6035

sonar 1.0000 0.4447 0.4861 0.9730 0.2186 0.0000 0.6367 0.8502

splice-EI 0.2756 1.0000 0.9570 0.4085 0.9673 0.0000 0.9308 0.9924

t_series 0.0000 1.0000 1.0000 0.6118 0.5897 0.3711 0.2001 0.4879

tae 1.0000 0.3064 0.1779 0.6264 0.0000 0.1243 0.3183 0.2834

tae_noise 0.3677 0.2973 0.0000 0.3230 1.0000 0.5756 0.6443 0.1065

thy 0.2193 1.0000 0.9697 0.2549 0.2478 0.4973 0.0000 0.5027

thy_noise 0.0000 1.0000 0.9960 0.1918 0.6902 0.8471 0.5198 0.4200

tic-tac-toe 0.6565 0.7880 0.8993 1.0000 0.1301 0.0000 0.0187 0.3123

titanic 0.9559 0.8529 1.0000 0.9559 0.0000 0.0294 0.0294 0.8015

tmris 0.0000 0.4211 0.4211 0.9474 0.3684 0.8947 1.0000 0.8421

ttt 0.9993 0.5444 0.8448 1.0000 0.0000 0.0052 0.9825 0.9491

vehicle 0.7329 0.7115 0.7239 0.7324 0.0000 0.1010 0.4508 1.0000

votes 0.3142 1.0000 0.9633 0.3110 0.0000 0.8676 0.9777 0.6667

wav 0.6567 0.6059 0.7660 0.6128 0.6798 0.0000 0.8853 1.0000

waveform 0.6870 0.6417 0.7843 0.5591 0.7130 0.0000 0.9983 1.0000

waveform_noise 0.4676 0.5464 0.7215 0.2014 0.6646 0.0000 1.0000 0.9807

wav_noise 0.4046 0.5714 0.6796 0.3064 0.6697 0.0000 0.9298 1.0000

wdbc 0.7861 0.6428 0.6319 0.8078 0.5114 0.0000 1.0000 0.9066

wine 0.8076 0.6540 0.7185 0.8076 0.8521 0.0000 1.0000 0.9479

wpbc 0.4204 0.6341 0.8085 0.4355 0.0000 0.1663 0.9607 1.0000

xaa 0.4783 0.5011 0.5995 0.4901 0.2139 0.0000 0.3370 1.0000

xab 0.7361 0.4697 0.6019 0.7516 0.3889 0.0000 0.3143 1.0000

Appendix B. (Continued)

Dataset name IBK C4.5 PART KD NB OneR SVM NN

Appendix C. Count of best and worst performances by each algorithm across the set of 100 problems,
using different types of measures

1. Percentage of correct classification measure.

Classifier

IBK C4.5 PART KD NB OneR SVM NN

Worse 16 3 1 5 32 39 2 2

Best 17 26 11 18 9 4 26 25

2. TPR measure.

Classifier

IBK C4.5 PART KD NB OneR SVM NN

Worse 8 6 1 3 28 40 17 3

Best 27 25 20 25 27 13 30 32
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3. TNR measure.

Classifier

IBK C4.5 PART KD NB OneR SVM NN

Worse 12 6 2 5 38 38 14 7

Best 20 26 22 25 26 15 33 28

4. Weighted F-measure.

Classifier

IBK C4.5 PART KD NB OneR SVM NN

Worse 16 3 1 8 24 38 18 3

Best 29 28 26 23 20 11 30 27

5. Computational complexity measure.

Classifier

IBK C4.5 PART KD NB OneR SVM NN

Best 7 7 4 6 41 99 0 0

Worse 0 0 0 4 0 0 0 97

Appendix C. (Continued)
Appendix D. Formulation for data characteristics

measurement

D.1. Statistical measures

D.1.1. Geometric mean (GM)

The geometric mean of a sequence fXigni¼1 is:

GM ¼
Yn
i¼1

Xi

" #1=n
:

D.1.2. Harmonic mean (HM)

The harmonic mean HM(X1, . . ., Xn) of n points Xi

is:

HM ¼ nPn
i¼1 1=Xi

:

D.1.3. Trim mean (TM)

The trim mean measures the arithmetic mean of a

sample X excluding the specified trim fraction from

the same variable. The trim fraction is user dependent

parameter. We consider 20 for this parameter value

over the experiment. The trimmed mean is a robust

estimate of the center location of a sample. For

outliers’ dataset, the trimmed mean is a more

appropriate estimation of the center of the dataset.
D.1.4. Mad (M)

The mad estimates the mean absolute deviation of a

dataset [35].

D.1.5. Variance (V)

The variance is use to characterize the dispersion

among the measures in a given population. It

calculates the mean of the scores, and then measures

the amount that each score deviates from the mean and

then squares that deviation for a given population.

Numerically, the variance equals the average of the

squared deviations from the mean [36].

D.1.6. Standard deviation (std)

The std measures the spread of a set of data as a

proportion of its mean:

std ¼ 1

n� 1

Xn
i¼1

ðxi � x̄Þ2
 !1=2

;

where x̄ ¼ 1

n

X
xi; n is the sequence of lengths:

D.1.7. Prctile

Prctile calculates a value for a variable that is

greater than a certain percentage in the same variable.

We consider the percentage value is 90 over the all

datasets.
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Some other simple statistical measures including

mean and median are also considered to characterise

the datasets, for details see [16].

D.1.8. Interquartile range (IQR)

The IQR is used as a robust measure of scale and

measures the distance between the 25th and the 75th

percentile [29]. The hypothesis is, if the variables are

approximately normal, then IQR/s � 1.3,where s is the

standard deviation of the population. Another name of

25th percentile is semi-interquartile range (siqr).

D.1.9. Maximum and minimum eigenvalues

The maximum and minimum eigenvalues are the

maximum and minimum variances of a dataset. We

use the sample covariance matrix to calculate the

eigenvalues:

R ¼ 1

n

Xn
pi¼1

XðpiÞ0XðpiÞ:

D.1.10. Canonical correlation (CC)

Correlation coefficients can be interpreted by the

square root of the eigenvalues of a matrix. Because the

correlations pertain to the canonical variates, so they

are called canonical correlations for details [30].

D.1.11. Index of dispersion (ID)

The larger value of ID indicates the datasets are

widely scattered, otherwise it is closely clustered [31]:

ID ¼ kðN2 �
P

f 2Þ
N2ðc� 1Þ

;

where N is the number of scores, c is the number of

categories of the variables and
P

f 2 is the sum of the

squared frequencies over the categories.

D.1.12. Center of gravity (CG)

CG measures the Euclidean norm between minor-

ity and majority classes. The minimum value indicates

the closeness between groups and the maximum

indicates the dispersion between groups:

CG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðai;j � bi;jÞ

q
;

where a and b belong to the center points of these two

groups.
D.1.13. Skewness and kurtosis

The skewness (s) and kurtosis (k) [16] of a

distribution are defined as:

s ¼ EðX � mÞ3

s3
; k ¼ EðX � mÞ4

s4
;

where m is the mean and s is the standard deviation

of X.

D.1.14. Correlation coefficient

The sample correlation coefficient between X and Y

is denoted by rxy or simply by r [32] as follows:

r ¼ sxy
sxsy

¼ 1

n� 1

Xn
i¼1

Xi � X̄

sx

� �
Yi � Ȳ

sy

� �
:

D.1.15. Z-score

The value of Z-score is greater than 3 indicates that

the data distribution has outliers [32].

Z-score ¼ X � X̄

s
:

D.1.16. Normal cumulative distribution test

It computes the normal cumulative distribution

function [16] of a normal distribution is:

pncdf ¼ FðXjm; sÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p
Z X

�1
e�ðt�mÞ=2s2

dt:

D.1.17. Chi-square test

The cumulative probability density function [16] of

chi-square test is:

pcst ¼ FðXjnÞ ¼
Z x

0

tðn�2Þ=2e�t=2

2n=2G ðn=2Þ
dt;

where n is the degree of freedom and G(�) is the gamma

function.

D.2. Information theoretical measures

D.2.1. Mean entropy of variables

Entropy is a measure of randomness in a variable.

The entropy H(X) of a discrete random variable X is

calculated in terms of qi (the probability that X takes

on the ith value). We average the entropy over all the
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variable and take this as a global measure of the

entropy of the variables:

HðXÞ ¼ �
X

qi log qi; H̄ðXÞ ¼ p�1
X

HðXiÞ:

D.2.2. Entropy of classes

This is similar to the entropy of variables, except

that the randomness in class assignment is measured,

where pi is the prior probability of class Ai:

HðCÞ ¼ �
X
i

pi logpi:

D.2.3. Mean mutual entropy of class and variables

For a measure of common information or entropy

shared between the two variables, if pij denotes the

joint probability of observing class Ai and the jth value

of variable X, if the marginal probability of class Ai is

pi, and if the marginal probability of variable X taking

on its jth value of q j, then the mutual information and

its mean over all variables as defined as:

MðC;XÞ ¼
X
ij

pij log
pij
piqi

� �
and

M̄ðC;XÞ ¼ p�1
X
i

MðC;XiÞ:

D.2.4. Equivalent number of variables (ENV)

This is the ratio between the class entropy and the

average mutual information:

ENV ¼ HðCÞ
M̄ðC;XÞ :

D.2.5. Noise–signal ratio (NSR)

NSR ¼ H̄ðXÞ � M̄ðC;XÞ
M̄ðC;XÞ :

A large NS ratio implies that a dataset contains much

irrelevant information (noise) and could be condensed

without affecting the performance of the model.
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